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Abstract

A Jacobi matrix with an-1; bn-0 and spectral measure n0ðxÞ dx þ dnsingðxÞ satisfies the
Szeg +o condition ifZ p

0

ln½n0ð2 cos yÞ� dy

is finite. We prove that if

an � 1þ a
n
þ Oðn�1�eÞ; bn � b

n
þ Oðn�1�eÞ

with 2aXjbj and e40; then the corresponding matrix is Szeg +o.
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1. Introduction

In this paper we discuss the Szeg +o condition for Jacobi matrices and orthogonal
polynomials. A Jacobi matrix is the matrix

J ¼

b1 a1 0 y

a1 b2 a2 y

0 a2 b3 y

y y y y
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with an40 and bnAR: We let n be the spectral measure of J as an operator on

c2ðf0; 1;ygÞ; with respect to the vector d0: That is,

/d0; ðJ � zÞ�1d0S ¼
Z

dnðxÞ
x � z

for zAC\R: We denote fPnðxÞgNn¼0 the orthonormal polynomials for this measure,

obtained from fxngNn¼0 by the Gram–Schmidt procedure. Since nðRÞ ¼ jjd0jj2 ¼ 1; we
have P0ðxÞ � 1: If we define P�1ðxÞ � 0; then the Pn’s obey the three-term recurrence
relation for nX0:

xPnðxÞ ¼ anþ1Pnþ1ðxÞ þ bnþ1PnðxÞ þ anPn�1ðxÞ: ð1:2Þ

Hence, fPnðxÞgNn¼0 is the Dirichlet eigenfunction of J for energy x: This relationship

establishes a one-to-one correspondence between bounded Jacobi matrices and
polynomials orthonormal w.r.t. measures with bounded infinite support and total
mass 1.
We will usually consider J such that J � J0 is compact. Here J0 is the free Jacobi

matrix with an � 1; bn � 0 and dn0ðxÞ ¼ ð2pÞ�1w½�2;2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
dx: For such J we have

an-1 and bn-0 and sessðJÞ ¼ ½�2; 2�: Outside of this interval J can only have
simple isolated eigenvalues, with 72 the only possible accumulation points. We

denote them Eþ
1 4Eþ

2 4?42 and E�
1 oE�

2 o?o� 2:

The main object of our interest is the Szeg +o integral

ZðJÞ � 1

2p

Z 2

�2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p

2pn0ðxÞ

 !
dxffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p ; ð1:3Þ

where n0ðxÞ � dnacðxÞ=dx: We say that J satisfies the Szeg +o condition if ZðJÞ is finite.
It can be proved that the negative part of the integral in (1.3) is always integrable and

ZðJÞX� 1
2
lnð2Þ (see [9]). Hence, we are left with the question whether ZðJÞoN:

There is extensive literature on when this is the case (e.g. [1,2,7,8,12–16,18,19]), and
so one is interested in answering this question.
Notice that

�2pZðJÞ ¼
Z p

0

ln
pn0ð2 cos yÞ

sin y

� �
dy ¼

Z p

0

lnðn0ð2 cos yÞÞdyþ const

with x ¼ 2 cos y: Many authors consider the last integral instead of ZðJÞ and the

question is whether
R p
0 lnðn0ð2 cos yÞÞdy4�N: For our purposes, ZðJÞ is more

suitable. Also notice that ZðJÞoN implies that the essential support of nac is ½�2; 2�:
In this paper, we want to address a conjecture of Askey about Coulomb-type

Jacobi matrices, reported by Nevai [12]. Askey conjectured that if

an � 1þ a
n
þ O

1

n2

� �
; bn � b

n
þ O

1

n2

� �
ð1:4Þ

with ða; bÞað0; 0Þ; then the Szeg +o condition fails (it has been known that it holds if
a ¼ b ¼ 0). Later, however, Askey–Ismail [1] found some explicit examples with
bn � 0 and a40 for which the Szeg +o condition holds! And Dombrowski–Nevai [7]
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proved that the condition holds whenever bn � 0 and an � 1þ a=n þ oðn�2Þ with
a40: In conclusion, the conjecture had to be modified.
The ‘‘right’’ form of the conjecture can be guessed from Charris–Ismail [3], who

computed the weights for certain Pollaczek-type polynomials (with an; bn of form
(1.4)). Although they did not note it, their examples are Szeg +o if and only if 2aXjbj:
We will see that this is true in general.
The first result which allows errors of type (1.4) was proved by Simon-Zlatoš [18],

and is in-line with this picture. Indeed, the following appears in [18].

Proposition 1.1. If

an � 1þ a
n
þ EaðnÞ; bn � b

n
þ EbðnÞ ð1:5Þ

with

XN

n¼1
ðjEaðnÞj þ jEbðnÞjÞ ¼ oðlnðNÞÞ

and 2aojbj; then the Szeg +o condition fails.

So Askey was right in the case 2aojbj: The present paper concentrates on the
complementary region 2aXjbj and shows that the Szeg +o condition holds there (see
figure below). Here is our main result. We denote aþ � maxfa; 0g and a� �
�minfa; 0g:

Theorem 1.2 (=Theorem 4.3). Let

an � cn þ Oðn�1�eÞ; bn � dn þ Oðn�1�eÞ ð1:6Þ

for some e40; where cnX1þ jdnj
2

for n4N; limn-N cn ¼ 1 and

XN
n¼1

n c2nþ1 � c2n þ
cnþ1
2

jdnþ2 � dnþ1j þ
cn

2
jdnþ1 � dnj

h i
þ
oN: ð1:7Þ

Then the matrix J; given by (1.1), satisfies the Szeg +o condition.

Remark. 1. Notice that the sum in (1.7) cannot be simplified. We cannot replace the
last two terms by cnjdnþ1 � dnj because we take positive parts of the summands in
(1.7).
2. In particular one can take cn � 1þ a=n and dn � b=n with 2aXjbj:
We will prove this theorem in two steps. The first one is an extension of the result

in [7] and shows that J is Szeg +o whenever an; bn satisfy the conditions for cn; dn in
Theorem 1.2.

The second step lets us add Oðn�1�eÞ errors to such cn; dn: Our tool here are the
Case sum rules for Jacobi matrices, in particular the step-by-step Z sum rule (1.8)
below (called C0 in [9]). These were introduced by Case [2], recently extended in [9],
and finally proved in the form we use here in [18] (see [4,5] for related Schrödinger
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operators results). We let b7j be such that E7
j ¼ b7j þ ðb7j Þ�1 and 7b7j 41: If J has

fewer than j eigenvalues above 2/below �2; we define bþ=�
j � þ1=� 1:

Let JðnÞ be the matrix obtained from J by removing n top rows and n leftmost
columns. It was proved in [18] that if J � J0 is compact, then we have

ZðJÞ ¼ �
Xn

j¼1
lnðajÞ þ

X
7

X
j

ðlnjb7j ðJÞj � lnjb7j ðJðnÞÞjÞ þ ZðJðnÞÞ ð1:8Þ

and that the double sum is always convergent with non-negative terms.

Eq. (1.8) holds even if ZðJÞ ¼ N; and so J is Szeg +o if and only if JðnÞ is. In
particular, the Szeg +o condition is stable under finite-rank perturbations. We will be
able to pass to certain infinite-rank perturbations of J by representing them as limits
of finite-rank perturbations and using lower semicontinuity of Z in J proved in [9].

To do this, we need to control the change of the E7
j ’s under these perturbations, in

order to estimate the double sum in (1.8) (or, more precisely, in (4.2)).
The rest of the paper is organized as follows. In Section 2 we extend the above-

mentioned result from [7]. In Section 3 we prove results on the control of change of
eigenvalues under certain finite-rank perturbations. In Section 4 we use these to
prove Theorem 1.2, along with some related results.
Finally, Section 5 discusses some situations when the Szeg +o integral is allowed to

diverge at one end (one-sided Szeg +o conditions). We study case (1.4) with Oðn�1�eÞ
errors and establish the following picture:

The ða; bÞ plane is divided into four regions by the lines 2a ¼ 7b: Inside the right-
hand region ZðJÞ converges at both ends, inside the top and bottom regions ZðJÞ
converges only at, respectively, 2 and �2; and inside the left-hand region ZðJÞ
diverges at both ends. As for the borderlines 2a ¼ 7b; if aX0; then ZðJÞ converges
at both ends and if ao0; then ZðJÞ diverges at 72 (convergence at 82 is left open).
The divergence results follow from [18] and hold for more general errors, trace class
in particular.
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2. On an argument of Dombrowski–Nevai

In this section we will improve a result of Dombrowski–Nevai [7]. We will closely
follow their presentation and introduce an additional twist which will yield this
improvement. The notation here is slightly different from [7] because their bn’s start

with n ¼ 0 and their ‘‘free’’ an’s are
1
2
: We define

SnðxÞ �
Xn

j¼0
½ða2jþ1 � a2j ÞP2

j ðxÞ þ ajðbjþ1 � bjÞPjðxÞPj�1ðxÞ�; ð2:1Þ

where we take a0 ¼ b0 ¼ 0: Notice that the Sn obey the obvious recurrence relation

SnðxÞ ¼ Sn�1ðxÞ þ ða2nþ1 � a2nÞP2
nðxÞ þ anðbnþ1 � bnÞPnðxÞPn�1ðxÞ: ð2:2Þ

Using this and (1.2) one proves by induction the following formula from [6]:

SnðxÞ ¼ a2nþ1 P2
nþ1ðxÞ �

x � bnþ1
anþ1

Pnþ1ðxÞPnðxÞ þ P2
nðxÞ

� �
: ð2:3Þ

The results in [7] are based on (2.2) and (2.3). Our simple but essential
improvement is the introduction of a function closely related to Sn; but satisfying a
recurrence relation which is more suitable for the purposes of this argument. We
define

TnðxÞ � SnðxÞ þ
anþ1
2

jbnþ2 � bnþ1jP2
nðxÞ ð2:4Þ

and then we have

TnðxÞ ¼Tn�1ðxÞ þ ða2nþ1 � a2nÞP2
nðxÞ þ anðbnþ1 � bnÞPnðxÞPn�1ðxÞ

þ anþ1
2

jbnþ2 � bnþ1jP2
nðxÞ �

an

2
jbnþ1 � bnjP2

n�1ðxÞ:

The importance of this relation lies in the fact that it implies the crucial inequality

TnðxÞpTn�1ðxÞ þ a2nþ1 � a2n þ
anþ1
2

jbnþ2 � bnþ1j þ
an

2
jbnþ1 � bnj

h i
P2

nðxÞ ð2:5Þ

by writing jPnðxÞPn�1ðxÞjp1
2
ðP2

nðxÞ þ P2
n�1ðxÞÞ: Hence, our choice of Tn eliminated

the unpleasant cross term in (2.2).
Now we are ready to apply the argument from [7], but to Tn in place of Sn: We

define

dn � a2nþ1 � a2n þ
anþ1
2

jbnþ2 � bnþ1j þ
an

2
jbnþ1 � bnj

h i
þ
: ð2:6Þ

Lemma 2.1. If anX1þ jbnj
2

for n4N; then for n4N

ð4� x2ÞP2
nðxÞp4Tn�1ðxÞ; jxjp2; ð2:7Þ

max
jxjp2

P2
nðxÞpðn þ 1Þ2 max

jxjp2
Tn�1ðxÞ; ð2:8Þ
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0pTnðxÞpexp
4dn

4� x2

� �
Tn�1ðxÞ; jxjo2; ð2:9Þ

max
jxjp2

TnðxÞpeðnþ1Þ
2dn max

jxjp2
Tn�1ðxÞ: ð2:10Þ

Proof. From (2.3)

Sn�1ðxÞ ¼ a2n Pn�1ðxÞ �
x � bn

2an

PnðxÞ
� �2

þ1
4
½4a2n � ðx � bnÞ2�P2

nðxÞ:

The assumption 2anX2þ jbnj implies 4a2n � ðx � bnÞ2X4� x2 for jxjp2; and (2.4)

implies Tn�1ðxÞXSn�1ðxÞ: This proves (2.7). Eq. (2.8) follows from (2.7) and a
theorem of Bernstein [11, p. 139], and (2.9) and (2.10) from (2.5)–(2.8). &

In [7], similar statements are proved for Sn: The important difference is that the

proofs use (2.2) rather than (2.5), and therefore involve d0n ¼ ½a2nþ1 � a2n�þ þ anjbnþ1 �
bnj: This is a serious drawback because the condition

P
ndnoN will play a central

role in our considerations. If, for example, an ¼ 1þ a=n and bn ¼ b=n; thenP
nd0noN only if aX0 and b ¼ 0 (cf. the result from [7] mentioned in Section 1), butP
ndnoN whenever 2aXjbj: This is because in dn (and not in d0n) the contribution of

the positive jbnþ1 � bnj terms can be canceled by a decrease in an: Therefore Tn can
sometimes be a better object to look at than Sn; for example in the case of Coulomb
Jacobi matrices. The next result relates Tn and ZðJÞ:

Lemma 2.2. Suppose limn-N an ¼ 1; limn-N bn ¼ 0 andXN
n¼1

ðjanþ1 � anj þ jbnþ1 � bnjÞoN: ð2:11Þ

Then for jxjo2

lim
n-N

TnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p

2pn0ðxÞ : ð2:12Þ

Remark. 1. The right-hand side appears in (1.3) and so one can use (2.12) and
Fatou’s lemma to obtain upper bounds on ZðJÞ (see proof of Theorem 2.5).
2. Results relating density of the absolutely continuous part of the spectral

measure and asymptotics of the solutions of difference (or differential) equations,
under the assumption of finite variation of the potential, go back to Weidmann
[22,23].

Proof. If (2.11) holds, then it is proved in [10] that for xAð�2; 2Þ

lim
n-N

P2
nþ1ðxÞ �

x � bnþ2
anþ2

Pnþ1ðxÞPnðxÞ þ
anþ1
anþ2

P2
nðxÞ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p

2pn0ðxÞ
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(in [10] an-
1
2
and the limit is 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
=pn0ðxÞ). By Simon [17] fPnðxÞgn is bounded

for any fixed xAð�2; 2Þ when (2.11) holds. Hence an-1 and bn-0 imply

lim
n-N

½P2
nþ1ðxÞ � xPnþ1ðxÞPnðxÞ þ P2

nðxÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p

2pn0ðxÞ :

But by (2.3) and (2.4) this limit is the same as limn TnðxÞ: &

In the light of the discussion preceding the lemma, the following will be useful.

Lemma 2.3. If inffang40 and
P

n dnoN; then (2.11) holds.

Proof. We have 0p½a2nþ1 � a2n�þpdn; hence
P

½a2nþ1 � a2n�þoN: By telescopingP
½a2nþ1 � a2n��pa21 þ

P
½a2nþ1 � a2n�þoN and so

P
ja2nþ1 � a2njoN: Since

inffang40; it follows that
P

janþ1 � anjoN: Also, since

0p
anþ1
2

jbnþ2 � bnþ1j þ
an

2
jbnþ1 � bnjpdn þ ja2nþ1 � a2nj

and an are bounded away from zero,
P

jbnþ1 � bnjoN: &

These lemmas have the same consequences as in [7], but with dn in place of d0n:
Thus we can prove the following two results.

Theorem 2.4. Suppose anX1þ jbnj
2

for n4N; limn-N an ¼ 1 and

XN
n¼1

n2 a2nþ1 � a2n þ
anþ1
2

jbnþ2 � bnþ1j þ
an

2
jbnþ1 � bnj

h i
þ
oN:

Then there is c40 such that

dnac
dx

ðxÞXc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
; jxjo2:

Remark. 1. In particular, the corresponding matrix J is Szeg +o.
2. Notice that the above conditions are satisfied for ank1; bn � 0; as pointed

out in [7].

Proof. By (2.6) and (2.10) we have for all jxjp2 and n4N

TnðxÞpexp
XN
j¼N

ðj þ 1Þ2dj

 !
max
jxjp2

TNðxÞ �
1

2pc
oN:

Lemmas 2.3 and 2.2 finish the proof. &

The main result of this section is
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Theorem 2.5. Suppose anX1þ jbnj
2

for n4N; limn-N an ¼ 1 and

XN
n¼1

n a2nþ1 � a2n þ
anþ1
2

jbnþ2 � bnþ1j þ
an

2
jbnþ1 � bnj

h i
þ
oN:

Then J given by (1.1) is Szeg +o.

Proof. Once again, we closely follow [7]. By Lemmas 2.3 and 2.2 and Fatou’s lemma

ZðJÞp lim
ek0

lim inf
n-N

1

2p

Z 2�e

�2þe
lnþðTnðxÞÞ

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
� �

and so it is sufficient to prove

Z 2�n�2

0

lnþðTnðxÞÞ
dxffiffiffiffiffiffiffiffiffiffiffi
2� x

p þ
Z 0

�2þn�2
lnþðTnðxÞÞ

dxffiffiffiffiffiffiffiffiffiffiffi
2þ x

p pC

for some CoN: Let us consider the first integral, which we denote In (both can be
treated similarly).
By (2.9) and (2.10), for n4N:

Inp In�1 þ 2dn

Z 2� 1

ðn�1Þ2

0

dx

ð2� xÞ
3
2

þ lnþ max
jxjp2

TnðxÞ
� � Z 2� 1

n2

2� 1

ðn�1Þ2

dxffiffiffiffiffiffiffiffiffiffiffi
2� x

p

¼ In�1 þ 2dnð2n � 2�
ffiffiffi
2

p
Þ þ 2

n � 1
� 2

n

� �
lnþ max

jxjp2
TnðxÞ

� �

p In�1 þ 4ndn þ
2

n � 1
lnþ max

jxjp2
Tn�1ðxÞ

� �
þ 2ðn þ 1Þ2dn

n � 1
� 2

n
lnþ max

jxjp2
TnðxÞ

� �

p In�1 þ 13ndn þ
2

n � 1
lnþ max

jxjp2
Tn�1ðxÞ

� �
� 2

n
lnþ max

jxjp2
TnðxÞ

� �

because lnþðxÞ þ lnþðyÞXlnþðxyÞ: By iterating this, we obtain

Inp IN þ 13
Xn

j¼Nþ1
jdj þ

2

N
lnþ max

jxjp2
TNðxÞ

� �

p 13
XN
n¼1

ndn þ 5 lnþ max
jxjp2

TNðxÞ
� �

� C

2

as desired. &

In particular, if an � 1þ a=n and bn � b=n with 2aXjbj; then J is Szeg +o. Later we

will add Oðn�1�eÞ errors to these an; bn:
For further reference we make
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Definition 2.6. We call a pair of sequences fan; bngNn¼1 admissible, if anX1þ jbnj
2
for

n4N; limn-N an ¼ 1 andXN
n¼1

n a2nþ1 � a2n þ
anþ1
2

jbnþ2 � bnþ1j þ
an

2
jbnþ1 � bnj

h i
þ
oN:

Hence, if fan; bng is admissible, then J is Szeg +o. We make some useful
observations.

Lemma 2.7. Suppose fan; bng is admissible and fen; fng is such that 2enXj fnj for n4N;
en-0 and

P
nðjenþ1 � enj þ j fnþ1 � fnjÞoN: Then fan þ en; bn þ fng is also admis-

sible.

Proof. We only need to show the last condition for admissibility. If

en � ðanþ1 þ enþ1Þ2 � ðan þ enÞ2 þ
anþ1 þ enþ1

2
jbnþ2 þ fnþ2 � bnþ1 � fnþ1j

þ an þ en

2
jbnþ1 þ fnþ1 � bn � fnj;

then we want
P

n½en�þoN: Notice that

enp dn þ 2anþ1jenþ1 � enj þ 2janþ1 � anj jenj þ jenþ1 þ enjjenþ1 � enj

þ anþ1 þ enþ1
2

j fnþ2 � fnþ1j þ
an þ en

2
j fnþ1 � fnj

þ enþ1
2

jbnþ2 � bnþ1j þ
en

2
jbnþ1 � bnj

and so we only need to prove
P

nXnoN for Xn being any of the above terms. If Xn

is dn or one of the terms containing jenþ1 � enj or j fnþ1 � fnj; then this is obvious. For
the remaining three terms the same is true by the fact that

P
njenþ1 � enjoN and

en-0 imply nen-0; and by Lemma 2.3. &

Lemma 2.8. Suppose fan; bng is admissible and enk0 is such that fnenjanþ1 � anjg or

fnenjbnþ2 � bnþ1jg is bounded. Then fan þ en; bng is also admissible.

Proof. If

en � ðanþ1 þ enþ1Þ2 � ðan þ enÞ2 þ
anþ1 þ enþ1

2
jbnþ2 � bnþ1j þ

an þ en

2
jbnþ1 � bnj;

then by enþ1pen:

enp dn þ 2anþ1enþ1 � 2anen þ e2nþ1 � e2n þ
enþ1
2

jbnþ2 � bnþ1j þ
en

2
jbnþ1 � bnj

p dn þ enð2ðanþ1 � anÞ þ 1
2
jbnþ2 � bnþ1j þ 1

2
jbnþ1 � bnjÞ

p dn þ
2en

anþ1 þ an

dn þ
jan � anþ1j

4
jbnþ2 � bnþ1j þ

janþ1 � anj
4

jbnþ1 � bnj
� �

so
P

n½en�þoN by the hypotheses and Lemma 2.3. &
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We conclude this section with an interesting corollary. Notice that in (1.8) one
would like to take n-N to pass from the step-by-step sum rule to a ‘‘full size’’ sum

rule not involving JðnÞ: For this, one would need to separate the terms in (1.8) when
taking n-N: The following shows that there are many Jacobi matrices which are
Szeg +o, but one cannot do this (see [18] for results on when it is possible).

Corollary 2.9. Let fan; bng be admissible and let J̃ be a matrix with ãn � an þ c=n and

b̃n � bn for some c40: Then ZðJ̃ÞoN but

%A0ðJ̃Þ � lim sup
n

�
Xn

j¼1
lnðãjÞ

 !
¼ �N

and

E0ðJ̃Þ �
X
j;7

lnjb7j ðJ̃Þj ¼ N:

Proof. J̃ is Szeg +o by Lemma 2.8. Since ZðJÞoN; (1.8) yields %A0ðJÞoN (because
the other two terms in (1.8) are bounded from below). Since an-1 and

P
c
n
¼ N; we

obtain %A0ðJ̃Þ ¼ �N: By Theorem 4.1(d) in [18], this implies E0ðJ̃Þ ¼ N: &

3. Control of change of eigenvalues under perturbations

In this section we will prove results on the behavior of eigenvalues under certain
finite-rank perturbations of the an’s and bn’s. Namely, we will show that these

perturbations decrease Eþ
j and increase E�

j for all but finitely many j: This, of course,

means that we will not consider arbitrary perturbations. Indeed, in all the
perturbations we can treat, the an’s cannot increase. Immediately a question arises,
how is this compatible with the possibility of an4cn in Theorem 1.2. The answer is in

Lemma 2.7. Before doing a general Oðn�1�eÞ perturbation of cn; dn; we will increase

the cn’s by Cn�1�e for some large C; so that the assumptions of Theorem 1.2 will stay
valid and the new cn will be larger than an: Then we will use results from this section.
For details see the proof of Theorem 4.3.
For jX1 and nX� 1 we define

pnð7jÞ �
PnðE7

j Þ

ð
P

N

m¼0 P2
mðE7

j ÞÞ
1
2

:

Hence pð7jÞ � fpnð7jÞgNn¼0 is the normalized eigenfunction for energy E7
j :

Therefore pð7jÞ satisfies the same recurrence relation as PðE7
j Þ; and so

pnþ1ð7jÞ ¼
E7

j � bnþ1

anþ1
pnð7jÞ � an

anþ1
pn�1ð7jÞ: ð3:1Þ
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In what follows, we will use the following result from first-order perturbation
theory for eigenvalues (see, e.g., [21, p. 151]).

Proposition 3.1. Let JðtÞ � J þ tA for tAð�e; eÞ where J and A are bounded self-

adjoint operators on a Hilbert space. Assume that Jð0Þ has a simple isolated eigenvalue

Eð0ÞesessðJð0ÞÞ and let jð0Þ be the corresponding normalized eigenfunction. Then

there are analytic functions EðtÞ; jðtÞ defined on some interval ð�e0; e0Þ such that EðtÞ
is a simple isolated eigenvalue of JðtÞ with normalized eigenfunction jðtÞ; and we have
@
@t

EðtÞ ¼ /jðtÞ;AjðtÞS:

In the case of Jacobi matrices, all eigenvalues outside ½�2; 2� are simple. Hence if
JðtÞ � J þ tA with A bounded self-adjoint matrix, then

@

@t
E7

j ðtÞ ¼ /pð7j; tÞ;Apð7j; tÞS ð3:2Þ

as long as E7
j ðtÞ stays outside ½�2; 2�:

We define E7
j � 72 whenever J has less than j positive/negative eigenvalues.

Then, of course, (3.2) does not apply when E7
j ðtÞ ¼ 72; but we at least have

continuity of E7
j ðtÞ in t by norm-continuity of JðtÞ:

Here is the main idea of this section. Fix n and take A to be the matrix with
An�1;n ¼ An;n�1 ¼ �1 and all other entries zero (the upper left-hand corner of A

being A0;0). Then increasing t corresponds to decreasing an: We have

@

@t
E7

j ðtÞ ¼ �2pnð7j; tÞpn�1ð7j; tÞ:

Let us take j ¼ 1: Then by the Sturm oscillation theory [20] we know that
sgnðpnð1; tÞÞ ¼ sgnðpn�1ð1; tÞÞ and sgnðpnð�1; tÞÞ ¼ �sgnðpn�1ð�1; tÞÞ for nX1:

Hence Eþ
1 will decrease and E�

1 will increase when we decrease an: This is exactly

what we want.
Unfortunately, this is not always the case for other eigenvalues. Indeed, let us

consider a positive eigenvalue Eþ
j : By oscillation theory, pðjÞ changes sign j � 1 times

and so Eþ
j will grow at certain n: However, if Eþ

j E2; anE1 and bnE0; then by (3.1)

pnþ1ðjÞE2pnðjÞ � pn�1ðjÞ; that is, pðjÞ is (locally) close to a linear function of n:
Therefore, if sgnðpnðjÞÞ ¼ �sgnðpn�1ðjÞÞ; then sgnðpmðjÞÞ ¼ sgnðpm�1ðjÞÞ for man

but close to n: Hence, a suitable decrease of an along with some neighboring am’s

should always result into a decrease of Eþ
j : This is the content of the present section.

Definition 3.2. Let d40: We say that J̃ d-minorates J; if jE7
j ðJ̃ÞjpjE7

j ðJÞj whenever
jE7

j ðJÞjo2þ d:

Remark. 1. This is well defined because E7
j � 72 whenever J has less than j

positive/negative eigenvalues.
2. Notice that for fixed d this relation is transitive.
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Lemma 3.3. There exists d40 such that the following is true. If for some J we have

jam � 1jod and jbmjod for mAfn; n þ 1; n þ 2g; and J̃ is obtained from J by

decreasing an by c40 and anþ2 by d40 so that jan � c � 1jod; janþ2 � d � 1jod and

c=dA½ 1
13
; 13�; then J̃ d-minorates J:

Remark. That is, decreasing both an and anþ2 results into decrease of all but finitely

many jE7
j j: The same trick applied to an and anþ1 fails.

Proof. Let q � c=d: Let E � Eþ
j and pn � pnðþjÞ for some 2oEþ

j o2þ d: Then by

(3.1)

pnþ1 ¼ 2pn � pn�1 þ
E � 2anþ1 � bnþ1
1þ ðanþ1 � 1Þ pn þ

anþ1 � an

1þ ðan � 1Þ pn�1

¼ 2pn � pn�1 þ OðdÞðjpnj þ jpn�1jÞ ð3:3Þ

with jOðdÞjpCd for some universal CoN and all small d: Similarly we obtain by
iterating (3.1)

pnþ2 ¼ 3pn � 2pn�1 þ OðdÞðjpnj þ jpn�1jÞ: ð3:4Þ

Let now JðtÞ � J þ tA where A is such that An�1;n ¼ An;n�1 ¼ �q; Anþ1;nþ2 ¼
Anþ2;nþ1 ¼ �1 and all other entries are 0. Then obviously E7

j ð0Þ ¼ E7
j and J̃ ¼ JðdÞ:

By (3.2)

@

@t
Eþ

j ð0Þ ¼ /p;ApS ¼ �2ðqpnpn�1 þ pnþ2pnþ1Þ:

By (3.3) and (3.4)

qpnpn�1 þ pnþ2pnþ1 ¼ 6p2n � ð7� qÞpnpn�1 þ 2p2n�1 þ OðdÞðp2n þ p2n�1Þ: ð3:5Þ

Since 6 � 2� ð7�q
2
Þ240 for qAð7� 4

ffiffiffi
3

p
; 7þ 4

ffiffiffi
3

p
Þ*½ 1

13
; 13�; it follows that

6p2n � ð7� qÞpnpn�1 þ 2p2n�14jOðdÞjðp2n þ p2n�1Þ

for small enough d (uniformly for all qA½ 1
13
; 13�). That is, @

@t
Eþ

j ð0Þo0:

This argument obviously applies to all tA½0; d�; not only to t ¼ 0; as long as

Eþ
j ðtÞ42: This is because for each such t; JðtÞ satisfies the conditions of this lemma.

Hence Eþ
j ðtÞ can only decrease with t (and so stays smaller than 2þ d). Also, no new

eigenvalues can appear. Indeed—if Eþ
j ðt1Þ ¼ 2 and Eþ

j ðt2Þ42 for some t24t1—then

Eþ
j ðtÞ would have to have a discontinuity in ½t1; t2�; because by the above argument it

has to decrease whenever it is larger than 2.
A similar argument applies to E�

j ð0Þ4� 2� d; with pnþ1E� 2pn � pn�1 and

pnþ2E3pn þ 2pn�1 in place of (3.3) and (3.4), and shows that such E�
j increases with

t: The result follows. &

As mentioned earlier, same trick with anþ1 in place of anþ2 does not work.

Indeed—in (3.5) we would have 2p2n—ð1� qÞpnpn�1 þ OðdÞðp2n þ p2n�1Þ which cannot
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be guaranteed to be positive for any d40: However, we can replace anþ2 by anþk for

kX2; and the lemma stays valid for some smaller d ¼ dðkÞ40 and c=dA½ð4k2 �
3Þ�1; 4k2 � 3� (we use that pnþkEðk þ 1Þpn � kpn�1). Of course, the bounds on jam �
1j and jbmj have to hold for mAfn;y; n þ kg:
Before we start perturbing the bn’s, let us state one more result with the same

flavor.

Lemma 3.4. There exists d40 such that the following is true. If for some J we have

jam � 1jod and jbmjod for mAfn; n þ 1; n þ 2g; and J̃ is obtained from J by

decreasing an; anþ1 and anþ2 by c40 so that jam � c � 1jod for mAfn; n þ 1; n þ 2g;
then J̃ d-minorates J:

Remark. Again, the result can be extended to decreasing an;y; anþk (for kX2) by
c40; with a smaller d ¼ dðkÞ40:

Proof. An argument as above yields for An�1;n ¼ An;n�1 ¼ An;nþ1 ¼ Anþ1;n ¼
Anþ1;nþ2 ¼ Anþ2;nþ1 ¼ �1

@

@t
Eþ

j ð0Þ ¼ � 2ðpn�1pn þ pnpnþ1 þ pnþ1pnþ2Þ

¼ � 2ð8p2n � 7pnpn�1 þ 2p2n�1 þ OðdÞðp2n þ p2n�1ÞÞ

which is negative for small enough d; since 8 � 2� ð7
2
Þ240: The rest of the previous

proof applies. &

Our next aim is to allow perturbations of the bn’s as well. If one decreases bn; it is

obvious that all Eþ
j decrease, but all E�

j decrease as well. Hence, perturbing the bn’s

alone will not move ‘‘in’’ all eigenvalues. To ensure that, we have to counter the
undesired movement of E�

j by decreasing an’s.

Lemma 3.5. There exists d40 such that the following is true. If for some J we have

jam � 1jod and jbmjod for mAfn; n þ 1; n þ 2g; and J̃ is obtained from J by

decreasing an and anþ2 by c40 and changing bn by dA½�c
2
; c
2
� so that jan � c � 1jod;

janþ2 � c � 1jod and jbn þ djod; then J̃ d-minorates J:

Proof. This time we have An�1;n ¼ An;n�1 ¼ Anþ1;nþ2 ¼ Anþ2;nþ1 ¼ �1 and

An�1;n�1 ¼ q � d=c: We obtain

@

@t
Eþ

j ð0Þ ¼ � 2ðpn�1pn þ pnþ1pnþ2Þ þ qp2n�1

¼ � 2ð6p2n � 6pnpn�1 þ ð2� q
2
Þp2n�1 þ OðdÞðp2n þ p2n�1ÞÞ

which is negative for small enough d if qo1 (i.e. if 6 � ð2� q
2
Þ � ð6

2
Þ240). A similar

argument for E�
j requires q4� 1; so there is a d40 which works for all

qA½�1
2
; 1
2
�: &
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4. The main result

We will now outline an argument suggested in [18]. This shows how to use (1.8) to
prove stability of the Szeg +o condition under certain trace class perturbations.

Let J̃ be a trace class perturbation of a matrix J which we know to be Szeg +o. That
is X

n

ðjãn � anj þ jb̃n � bnjÞoN: ð4:1Þ

Let J̃n be the matrix which we obtain from J by replacing aj; bj by ãj; b̃j for j ¼
1;y; n: Then J̃n-J̃ pointwise (and also in norm). Now by applying (1.8) to both J̃n

and J and subtracting, we obtain

ZðJ̃nÞ ¼ ZðJÞ �
Xn

j¼1
ðlnðãjÞ � lnðajÞÞ þ

X
j;7

ðlnjb7j ðJ̃nÞj � lnjb7j ðJÞjÞ: ð4:2Þ

By lower semicontinuity of Z in J (in the topology of pointwise convergence of

matrix elements; see [9]), we know that ZðJ̃Þplim inf ZðJ̃nÞ: So taking n-N in (4.2)
we obtain

ZðJ̃ÞpZðJÞ þ
XN
j¼1

jlnðãjÞ � lnðajÞj þ lim inf
n

X
j;7

ðlnjb7j ðJ̃nÞj � lnjb7j ðJÞjÞ:

ð4:3Þ

If inf j fãj; ajg40; then the first sum is finite by (4.1). Hence, if we could show that

the lim inf is smaller than þN; we would prove J̃ to be Szeg +o. Notice that this is true

if for some d40 each J̃n d-minorates J; because then jb7j ðJ̃nÞjpjb7j ðJÞj whenever
jE7

j ðJÞjo2þ d and the other jb7j ðJ̃nÞj are bounded. This is where results from the

previous section enter the picture.
Unfortunately, we cannot treat general trace class perturbations at this moment.

The reason is the necessity to use Lemma 2.7, as described in Section 3. It also needs

to be said that in what follows, the ‘‘partial perturbations’’ J̃n will be slightly
different from those above. They will differ in up to 4 matrix elements, but they will

still converge to J̃ and so (4.3) will stay valid.
Let us now apply the above argument. We start with

Lemma 4.1. Let J be Szeg +o with an-1; bn-0; and let enk0; enoan;
P

n enoN:

Then the matrix J̃ with ãn � an � en and b̃n � bn is also Szeg +o.

Proof. Let d � minfdð2Þ; dð3Þ; dð4Þg40 where dðkÞ are as in the remark after
Lemma 3.4 (that is, good for decreasing 3, 4 and 5 consecutive an’s). Let N be such

that for jXN we have jaj � 1jod; jãj � 1jod and jbj jod: For nXN þ 1 let J̃n be
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such that bjðJ̃nÞ � bj and

ajðJ̃nÞ �
ãj; jpN � 1;

ãj þ enþ1; Npjpn;

aj; jXn þ 1:

8><
>:

Then J̃Nþ1 is Szeg +o because it is a finite-rank perturbation of J:

Let nXN þ 2: Notice that J̃n is obtained from J̃n�1 by decreasing ajðJ̃n�1Þ by

c � en � enþ1 for j ¼ N;y; n: This can be accomplished by successive decreases of 3,
4 or 5 neighboring aj ’s by c; as in Lemma 3.4 (and the remark after it). It follows that

J̃n d-minorates J̃n�1; and so by induction J̃n d-minorates J̃Nþ1: Then by (4.2) (with

do1
2
)

ZðJ̃nÞpZðJ̃Nþ1Þ þ 2
XN
j¼N

ej þ K lnðMÞoN;

where K is the number of eigenvalues of J̃Nþ1 outside ð�2� d; 2þ dÞ and M �
3 supj faj; jbjjgXjjJ̃njj: So ZðJ̃nÞ are uniformly bounded and since J̃n-J̃ pointwise,

lower semicontinuity of Z implies ZðJ̃ÞoN: &

Corollary 4.2. Suppose fan; bng is admissible and fen; fng is such that en-0; fn-0;

en4� an and
P

nðjenþ1 � enj þ j fnþ1 � fnjÞoN: Then the matrix J̃ with ãn � an þ en;

b̃n � bn þ fn is Szeg +o.

Remark. This is almost like Lemma 2.7 with the condition 2enXj fnj removed.

Proof. Let us define %en �
P

N

j¼n jejþ1 � ejj and similarly for fn: Notice that %enXjenj;
%enk0 andXN

n¼1
%enp

XN
n¼1

njenþ1 � enjoN:

Then if ẽn � en þ %en þ %fn; we have 2ẽnXj fnj; and so fan þ ẽn; bn þ fng is admissible by
Lemma 2.7. Then by Lemma 4.1 the result follows. &

We are now ready to prove Theorem 1.2.

Theorem 4.3. Suppose that fan; bng is admissible and e40: Then the matrix J̃ with

ãn � an þ Oðn�1�eÞ; b̃n � bn þ Oðn�1�eÞ

is Szeg +o.

Proof. Our strategy is as outlined in Section 3. We let

C � sup
n

fjãn � anjn1þe; jb̃n � bnjn1þegoN ð4:4Þ
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and increase an by 6Cn�1�e (we call these again an). Then by Lemma 2.7 (or Lemma
2.8), fan; bng (with the new an) is also admissible. Thus, the new J is Szeg +o and we
now have

an � ãnA½5Cn�1�e; 7Cn�1�e�;

bn � b̃nA½�Cn�1�e;Cn�1�e�: ð4:5Þ

Let d be such that both Lemmas 3.3 and 3.5 hold. Let N be such that for jXN we

have jaj � 1jod; jãj � 1jod; jbjjod and jb̃j jod: We let J̃N�1 be such that

ajðJ̃N�1Þ �
ãj ; jpN � 1;

aj ; jXN

(

and similarly for bjðJ̃N�1Þ: Then J̃N�1 is Szeg +o because it is a finite-rank perturbation
of J:

We construct J̃N from J̃N�1 by first decreasing aN ; aNþ2 by 2jbN � b̃N j and

changing bN to b̃N ; and then decreasing aN by aN � ãN and aNþ2 by ðaN � ãNÞ=13 (in
terms of the new aN ). Both these perturbations are d-minorating by Lemmas 3.3 and
3.5, and the obtained matrix J̃N agrees with J̃ in first N couples ajðJ̃NÞ; bjðJ̃NÞ: The
others are same as in J; only exception being aNþ2ðJ̃NÞ; for which we know

aNþ2ðJ̃NÞ � ãNþ2A½2CðN þ 2Þ�1�e; 7CðN þ 2Þ�1�e� ð4:6Þ

(if N is chosen so that 33N�1�ep39ðN þ 2Þ�1�e).

Now we apply the same procedure to inductively construct J̃n from J̃n�1 for

nXN þ 1: Each J̃n will agree with J̃ up to index n; and other elements will be the

same as in J; with the exception of anþ1ðJ̃nÞ and anþ2ðJ̃nÞ: For these we will have (4.6)
(with n þ 1 and n þ 2 in place of N þ 2), which is just enough so that we can change

bnþ1 to b̃nþ1 when passing to J̃nþ1 by the same method. Since J̃n d-minorates J̃n�1; we

obtain by induction that each J̃n d-minorates J̃N�1:

Again, we have by (4.2) (with do1
2
)

ZðJ̃nÞpZðJ̃N�1Þ þ 14C
XN
j¼N

j�1�e þ K lnðMÞoN

with K and M as in the proof of Lemma 4.1. Since J̃n-J̃; the result follows. &

Corollary 4.4. Let 2aXjbj; enk0; e40 and

an � 1þ a
n
þ en þ Oðn�1�eÞ; bn � b

n
þ Oðn�1�eÞ:

Then J is Szeg +o.

Remark. 1. This settles the 2aXjbj case of Askey’s conjecture.
2. The same is true when an�1; bn�1 are replaced by an�g; bn�g for any g40:
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Proof. By Lemma 2.8, f1þ a=n þ en; b=ng is admissible. Then use Theorem 4.3. &

Let us now return to considering perturbations of a single an: As noted in Section

1, decreasing it can only guarantee decrease of jE7
1 j: However, if we know that J has

no bound states (eigenvalues outside ½�2; 2�), then this is sufficient to conclude that
no new bound states can appear when decreasing an:

Theorem 4.5. Assume that J with an-1; bn-0 has only finitely many bound states

and let J̃ have ãnpan and b̃n ¼ bn with ãn-1: Then J̃ is Szeg +o if and only if J is Szeg +o

and
P

n ðan � ãnÞoN: In any case, J̃ also has only finitely many bound states.

Proof. We only need to prove this theorem for J with no bound states. For by Sturm

oscillation theory, J has finitely many of them iff JðnÞ has none for large enough n:

And J is Szeg +o iff JðnÞ is. So let us assume that J has no bound states. Then by the

above discussion, J̃ has none as well. Indeed—if we let J̃n have ajðJ̃nÞ � ãj for

j ¼ 1;y; n and all other entries same as J; then J̃n is created from J̃n�1 by decreasing

an: Since J̃n�1 has no bound states, the same must be true for J̃n: Since J̃n-J̃ in

norm, J̃ also has no bound states.

If ZðJÞoN and
P

ðan � ãnÞoN; then ZðJ̃ÞoN by (4.3). No bound states and

Theorem 4.1(d) in [18] imply %A0ðJÞ4�N: So if
P

ðan � ãnÞ ¼ N; we obtain
%A0ðJ̃Þ ¼ N; and then ZðJ̃Þ ¼ N by (1.8) (since ZðJ̃ðnÞÞX� 1

2
lnð2Þ). Finally, if

ZðJÞ ¼ N; then no bound states and Theorem 4.1(a) in [18] give %A0ðJÞ ¼ N: This

implies %A0ðJ̃Þ ¼ N and so again ZðJ̃Þ ¼ N: &

Since Theorem 4.1 in [18] does not distinguish between no bound states and
E0ðJÞoN; we can extend the above result to that case, but we need to restrict it to d-
minorating perturbations of the an’s only (e.g., decreasing an by enk0). If E0ðJÞ ¼
N; then such a result cannot be generally true. For example, if 2a4jbj in the
Coulomb case, then decreasing a by a� jbj=2 results into a non-summable change of
the an’s, but the matrix stays Szeg +o.

5. One-sided Szeg+o conditions

In this section we will discuss Jacobi matrices which are Szeg +o at 2 or �2: That is
such, for which the Szeg +o integral (1.3) converges at 72; but is allowed to diverge at

82: This is particularly interesting for J which are Hilbert–Schmidt (i.e. L2)
perturbations of J0: For such J we know from [9] that

Z�
2 ðJÞ �

1

4p

Z 2

�2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p

2pn0ðxÞ

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
dxoN ð5:1Þ

(and Z�
2 ðJÞX0 holds always; see [9]). That of course means that ZðJÞ can only

diverge at 72:
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We define

Z7
1 ðJÞ � 1

4p

Z 2

�2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p

2pn0ðxÞ

 !
27xffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p dx ð5:2Þ

(the notation in (5.1) and (5.2) is from [18]). Again, Z7
1 ðJÞ is bounded below by some

c04�N and it is lower semicontinuous in J [18]. If J � J0AL2; then by (5.1),

integral (1.3) converges at 72 if and only if Z7
1 ðJÞoN: Since we will mainly be

interested in J � J0 Hilbert–Schmidt, we use the following definition of one-sided
Szeg +o conditions from [18].

Definition 5.1. We say that J is Szeg +o at 72 iff Z7
1 ðJÞoN:

We consider Z�
2 and Z7

1 as above because they appear in sum rules similar to (1.8)

[18]. Here we will only use the Z7
1 sum rules. If we let x7ðbÞ � lnjbj71

2ðb� b�1Þ;
then [18] proves for J � J0 compact

Zþ
1 ðJÞ ¼ �

Xn

j¼1
ðlnðajÞ þ 1

2
bjÞ þ

X
j;7

½xþðb7j ðJÞÞ � xþðb7j ðJðnÞÞÞ� þ Zþ
1 ðJðnÞÞ;

Z�
1 ðJÞ ¼ �

Xn

j¼1
ðlnðajÞ � 1

2 bjÞ þ
X
j;7

½x�ðb7j ðJÞÞ � x�ðb7j ðJðnÞÞÞ� þ Z�
1 ðJðnÞÞ:

ð5:3Þ

Just as with ZðJÞ; the infinite sums are always absolutely convergent and (5.3) holds

even if Z7
1 ðJÞ ¼ N: This shows that the one-sided Szeg +o conditions are also stable

under finite-rank perturbations.
We will only consider the Szeg +o condition at 2 and use the first of these identities.

The reason for this is an obvious symmetry—a matrix J is Szeg +o at �2 iff J̃ with

ãn � an and b̃n � �bn is Szeg +o at 2 (because JD� J̃). Therefore, our results for þ2
will immediately translate into similar results for �2:
The main tool for handling trace class perturbations will be the following

inequality, which we obtain from the first equation in (5.3) just as we obtained (4.3)

from (1.8) (with the same J̃n).

Zþ
1 ðJ̃ÞpZþ

1 ðJÞ þ
XN
j¼1

jlnðãjÞ � lnðajÞj þ 1
2

XN
j¼1

jb̃j � bjj

þ lim inf
n

X
j;7

ðxþðb7j ðJ̃nÞÞ � xþðb7j ðJÞÞÞ: ð5:4Þ

Notice that xþðbÞ is increasing and positive on ½1;NÞ; and increasing and
negative on ð�N;�1�: That of course means that the last sum in (5.4) will be

negative whenever b7j ðJ̃nÞpb7j ðJÞ for all j;7: In particular, if ãj ¼ aj and b̃jpbj for

all j:
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Theorem 5.2. Suppose J � J0 is compact.

(i) If J is Szeg +o at 2, and J̃ has ãn ¼ an; b̃npbn with
P

n ðbn � b̃nÞoN; then J̃ is also

Szeg +o at 2.
(ii) If J is Szeg +o at �2; and J̃ has ãn ¼ an; b̃nXbn with

P
n ðb̃n � bnÞoN; then J̃ is

also Szeg +o at �2:
(iii) Let Ĵ have ân ¼ an; b̂nXbn with

P
n ðb̂n � bnÞoN; and let both J; Ĵ be Szeg +o. If

J̃ has ãn ¼ an and bnpb̃npb̂n; then J̃ is also Szeg +o.

Proof. Condition (i) follows from the discussion above, (ii) from (i) by symmetry,
and (iii) from (i) and (ii) and the fact that J is Szeg +o iff it is Szeg +o at both 72: &

When perturbing the an’s as in Section 3, we have to be careful with negative

eigenvalues. Indeed, decreasing all jE7
j j does not necessarily make the last sum in

(5.4) negative, because xþðbÞ increases on ð�N;�1�: This problem can be overcome
if the contribution of the b�j ðJÞ’s to that sum is finite. Since for bm� 1

xþðbÞ ¼ Oðjbþ 1j3Þ ¼ OðjE þ 2j
3
2Þ

this means that we needX
j

jE�
j þ 2j

3
2oN: ð5:5Þ

Then the lim inf in (5.4) will be bounded from above if every change J̃n�1-J̃n

decreases all Eþ
j Að2; 2þ dÞ; irrespective of what happens to E�

j (xþðbÞ is negative on
ð�N;�1�). By Killip-Simon [9], (5.5) holds whenever J � J0AL2:
But before we can use this idea to handle certain trace class perturbations as in

Section 4, we first need to find some an; bn to be perturbed. Our aim is to treat
Coulomb Jacobi matrices with 2a47b and show they are Szeg +o at 82: To prove
the next result, we will return to the methods of Section 2.

Lemma 5.3. Suppose an-1; bn-0:

(i) Let fang be eventually strictly monotone and

an � an�1
anþ1 � an

-1;
bnþ1 � bn

anþ1 � an

-o ð5:6Þ

with o finite. If eventually

o sgnðanþ1 � anÞo� 2 sgnðanþ1 � anÞ;

then there are d40; c40 such that n0ðxÞXc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
in ð2� d; 2Þ:
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(ii) Let fbng be eventually strictly monotone and

bn � bn�1
bnþ1 � bn

-1;
anþ1 � an

bnþ1 � bn

-o1 ð5:7Þ

with o1 finite. If eventually

o1 sgnðbnþ1 � bnÞo� 1
2
sgnðbnþ1 � bnÞ;

then there are d40; c40 such that n0ðxÞXc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
in ð2� d; 2Þ:

Remark. 1. Condition (ii) is (i) with o1 ¼ o�1: It handles the case o ¼ 7N:

2. In particular, such J are Szeg +o at 2 whenever J � J0AL2:
3. By symmetry, same result holds for Szeg +o condition at �2; with ‘‘o� 2’’ and

‘‘o� 1
2
’’ replaced by ‘‘42’’ and ‘‘o1

2
’’.

Proof. (i) First notice that (2.11) holds because an is (eventually) monotone, and
either bn is monotone (if oa0) or jbnþ1 � bnjpjanþ1 � anj (if jojo1). Hence, we can
use Lemma 2.2. This time we will work with Sn instead of Tn; because it has a simpler
recurrence relation (2.2). Notice that by the proof of Lemma 2.2, for every jxjo2 we

have SnðxÞ-
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
=2pn0ðxÞ: The result will follow if we prove that SnðxÞpC for

some CoN; all xAð2� d; 2Þ and all large n:
We will show this by proving that for some K and all large enough n we have

SnþK�1ðxÞpSn�1ðxÞ for all xAð2� d; 2Þ: That is, we will iterate (2.2) K times at once.
Here KX3 and d will be fixed, but they will not be specified until later.
We let n be large and such that for all jXn we have jaj � 1jod and jbjjod; and we

take xAð2� d; 2Þ: Then by (1.2) in the form (3.1) we obtain for Pn � PnðxÞ and
kAf0;y;K � 1g

Pnþk ¼ ðk þ 1ÞPn � kPn�1 þ OðdÞðjPnj þ jPn�1jÞ:

We also have

a2nþkþ1 � a2nþk ¼ ðanþkþ1 � anþkÞð2þ oð1ÞÞ;

anþkðbnþkþ1 � bnþkÞ ¼ ðanþkþ1 � anþkÞðoþ oð1ÞÞ

with oð1Þ ¼ oðn0Þ taken w.r.t. n: From these estimates we obtain

Snþk � Snþk�1 ¼ða2nþkþ1 � a2nþkÞP2
nþk þ anþkðbnþkþ1 � bnþkÞPnþkPnþk�1

¼ðanþkþ1 � anþkÞf½ð2þ oð1ÞÞðk þ 1Þ2 þ ðoþ oð1ÞÞkðk þ 1Þ�P2
n

� ½ð2þ oð1ÞÞ2kðk þ 1Þ þ ðoþ oð1ÞÞð2k2 � 1Þ�PnPn�1

þ ½ð2þ oð1ÞÞk2 þ ðoþ oð1ÞÞkðk � 1Þ�P2
n�1

þ OðdÞðP2
n þ P2

n�1Þg;
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where the OðdÞ also depends on K and o (but not on x or n). Using the identitiesPK�1
k¼0 k2 ¼ Kð2K2 � 3K þ 1Þ=6;

PK�1
k¼0 k ¼ KðK � 1Þ=2 and anþkþ1 � anþk ¼

ðanþ1 � anÞð1þ oð1ÞÞ; we obtain for KX3

3

K

SnþK�1 � Sn�1
anþ1 � an

¼OðdÞðP2
n þ P2

n�1Þ

þ ½2K2 þ 3K þ 1þ oðK2 � 1Þ þ oð1Þ�P2
n

� ½4K2 � 4þ oð2K2 � 3K � 2Þ þ oð1Þ�PnPn�1

þ ½2K2 � 3K þ 1þ oðK2 � 3K þ 2Þ þ oð1Þ�P2
n�1;

where both OðdÞ and oð1Þ depend on K and o: Let us denote by I, II, III the three
square brackets in the above expression, without the oð1Þ terms. If I � III�
ðII=2Þ240; then for small enough d and large n (so that OðdÞ and oð1Þ are negligible)
the above expression will have the same sign as I. We have I � III� ðII=2Þ240
whenever

oe½c1ðKÞ; c2ðKÞ� � �2� 6þ 2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � 1

p

K2 � 4
;�2� 6� 2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � 1

p

K2 � 4

" #

Also, I40 when o4dðKÞ � �ð2K2 þ 3K þ 1Þ=ðK2 � 1Þ and Io0 when oodðKÞ:
Since c1ðKÞ; c2ðKÞ; dðKÞ-� 2 and by the above

sgnðSnþK�1 � Sn�1Þ ¼ sgnðanþ1 � anÞ sgnðIÞ

one only needs to take K large enough so that o4maxfc2ðKÞ; dðKÞg (if
sgnðanþ1 � anÞo0) or oominfc1ðKÞ; dðKÞg (if sgnðanþ1 � anÞ40). Then for small
enough d and all large n one obtains sgnðSnþK�1ðxÞ � Sn�1ðxÞÞ ¼ �1 whenever
xAð2� d; 2Þ: The result follows.
(ii) The proof is as in (i), but with the role of anþ1 � an played by bnþ1 � bn: We

obtain I ¼ o1ð2K2 þ 3K þ 1Þ þ K2 � 1 and sgnðSnþK�1 � Sn�1Þ ¼ sgnðbnþ1 �
bnÞ sgnðIÞ whenever

o1e � 1

2
�

ffiffiffi
3

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � 1

p ;� 1

2
þ

ffiffiffi
3

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � 1

p
" #

: &

Now we are ready to introduce errors and state the main result of this section.

Theorem 5.4. Suppose J̃ has

ãn � an þ Oðn�1�eÞ; b̃n � bn þ Oðn�1�eÞ;

where
P

N

n¼1 ðan � 1Þ2 þ
P

N

n¼1 b2noN and e40:
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(i) Assume an; bn satisfy (5.6) and n2þejanþ1 � anj-N: If eventually

o sgnðanþ1 � anÞo� 2 sgnðanþ1 � anÞ;

then J̃ is Szeg +o at 2. If eventually

o sgnðanþ1 � anÞ42 sgnðanþ1 � anÞ;

then J̃ is Szeg +o at �2:
(ii) Assume an; bn satisfy (5.7) and n2þejbnþ1 � bnj-N: If eventually

o1 sgnðbnþ1 � bnÞo� 1
2
sgnðbnþ1 � bnÞ;

then J̃ is Szeg +o at 2. If eventually

o1 sgnðbnþ1 � bnÞo1
2
sgnðbnþ1 � bnÞ;

then J̃ is Szeg +o at �2:

Remark. Notice that if supfn2þejanþ1 � anjgoN; then jan � 1jtn�1�e and since (in (i))

o is finite, we also have jbnjtn�1�e: Hence, J � J0 is trace class and hence Szeg+o by [9].

Proof. (i) We follow the proof of Theorem 4.3. First we increase an by 6Cn�1�e with
C from (4.4). We have

an þ 6C
n1þe � an�1 � 6C

ðn�1Þ1þe

anþ1 þ 6C

ðnþ1Þ1þe � an � 6C
n1þe

� an � an�1
anþ1 � an

¼ Oð1Þ
n2þeðanþ1 � anÞ þ Oð1Þ-0:

So if we call an þ 6Cn�1�e again an; we still have ðan � an�1Þ=ðanþ1 � anÞ-1: Similarly,
ðbnþ1 � bnÞ=ðanþ1 � anÞ-o: And, of course, fang has the same type of monotonicity as
before, by the assumption n2þejanþ1 � anj-N: We call J the matrix with these new

an; bn: By hypothesis J � J0AL2; so J is Szeg+o at 2 by Lemma 5.3(i) and (5.1).

Now we consider the same J̃n as in the proof of Theorem 4.3. The first of them is J̃N�1
and it is Szeg+o at 2 because it is a finite-rank perturbation of J: Each next J̃n will d-
minorate J̃n�1: That proves that in (5.4) (with J̃N�1 in place of J) the sum involving bþj
will be bounded above by KxþðMÞ with K and M as in Lemma 4.1. The sum with b�j
will be bounded above by

P
j ð�xþðb�j ðJ̃N�1ÞÞÞ and this is finite by (5.5) (which holds

because J̃N�1 � J0AL2). So the lim inf in (5.4) cannot be þN and the result follows.
(ii) The proof is identical. &

Corollary 5.5. Let e40 and

an � 1þ a
n
þ Oðn�1�eÞ; bn � b

n
þ Oðn�1�eÞ: ð5:8Þ

If 2a47b; then J given by (1.1) is Szeg +o at 82:
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Proof. Use Theorem 5.4(i) (if aa0) or (ii) (if a ¼ 0) with an � 1þ a=n;
bn � b=n: &

As for other pairs ða; bÞ in (5.8), Theorem 4.4(ii) in [18] shows that if 2ao7b; then
J cannot be Szeg +o at 82: Hence, the ða; bÞ plane is divided into four regions by the
lines 2a ¼ 7b: Inside the right-hand region J is Szeg +o, inside the top and bottom
regions J is Szeg +o only at, respectively, 2 and �2; and inside the left-hand region J is
Szeg +o neither at 2 nor at �2: On the borderlines the situation is as follows. If
2a ¼ 7b and aX0; then Corollary 4.4 shows that J is Szeg +o, and so Szeg +o at both 2
and �2: If 2a ¼ 7b and ao0; then J cannot be Szeg +o at 72 by Theorem 4.4(ii) in
[18]. I think that such J is Szeg +o at 82:
Finally, it should be mentioned that although we have mainly considered

Coulomb behavior of an; bn; the above picture is valid in more general setting as well.

For example in the case an � 1þ an�g þ Oðn�1�eÞ and bn � bn�g þ Oðn�1�eÞ with
1
2
ogp1; e40; as implied by results of [18] and this paper.
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